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Abstract
Real-time magnetic resonance image (rtMRI) data of the

upper airway provides a rich source of information about vocal
tract shaping that can inform phonemic analysis and classifica-
tion. We describe a multimodal phonemic classifier that com-
bines articulatory data with speech audio features to improve
performance. A deep network model processes rtMRI video
data using ResNet18 and speech audio using a custom CNN and
then combines the two data streams using a Transformer layer
to fully explore the correlation of the two streams towards bet-
ter vowel-consonant-vowel classification via the Transformer’s
multi-head self-attention mechanism. The classification accu-
racy of both the unimodal and multimodal models show sub-
stantial improvement on previous work (> 38%). The addition
of audio features improves classification accuracy in the multi-
modal model by 7% compared with the unimodal model using
articulatory data. We analyze the model and discuss the pho-
netic implications.
Index Terms: vocal tract, phonemic classification, multimodal
networks, real-time MRI, Transformer

1. Introduction
Speech production is characterized by continuous dynamic re-
configuration of the upper airway arising from the coordination
of speech gestures [1, 2]. The goals of production that give rise
to different vocal tract configurations in anatomically diverse
speakers and the relationships between different vocal tract ge-
ometries and the acoustic speech signal are still imperfectly un-
derstood and an active area of research [3, 4, 5]. Mapping vo-
cal tract configurations to phonological structures has proven to
be difficult because of the variability and complex interactions
between articulators, because it remains difficult to accurately
visualize the coordination of various articulators for speech pro-
duction, and because the relationship between morphological
features and phonological features is itself complicated [6, 7].
New insights into these issues are afforded by real-time imag-
ing of the upper airway [8, 9], a key method providing tempo-
rally and spatially rich information about the vocal tract during
speech production [10].

There are challenges with analyzing real-time images of the
vocal tract, often related to the complexity of speech. Previous
studies of vocal tract configuration using deep learning mod-
els based on mid-sagittal rtMRI data have primarily used im-
age data alone. Saha et al. [11] classified 54 vowel-consonant-
vowel (VCV) combinations with an accuracy rate of 42% using
the USC Speech and Vocal Tract Morphology MRI Database
[8]. Van Leeuwen et al. [12] classified 27 sustained phonemes
with an accuracy rate of 57% using the same dataset. Multi-
modal co-learning [13] may offer improvements in the anal-

ysis of vocal tract rtMRI images, especially in regards to en-
richment of the representation and/or latent space of the net-
work models. In this light, the advantages of multimodal co-
learning classification approaches have been demonstrated in
many aspects of speech processing and automatic speech recog-
nition [14, 15, 16], as models can leverage the complementarity
between different modalities to improve classification perfor-
mance and robustness. For example, Köse et al. [17] showed
that integrating rtMRI video and speech audio data offers im-
proved performance over a unimodal approach in 39 phone clas-
sification tasks, using the USC-TIMIT dataset [9].

In this work, we consider models that utilize the Trans-
former architecture. Because of their self-attention mechanism,
Transformers [18] have gained prominence across various mul-
timodal models, due to their excellent capacity to model long
range dependency. For example, Transformer-based models
have shown promise in various speech tasks like acoustic-to-
articulatory inversion (AAI) [19, 20], spoken language under-
standing (SLU) [21], automatic speech recognition (ASR) [22]
and speech translation (ST) [23]. Here, we develop and explore
a multimodal neural network model for a phonemic VCV clas-
sification task that takes midsagittal image and acoustic speech
data as input, and uses a Transformer network to effectively fuse
the two streams. To the best of our knowledge, this work is
the first study that applies a Transformer network for the anal-
ysis of rtMRI data corresponding to a VCV task and analyzes
the attention matrices to obtain an improved understanding of
the model behavior. The classification accuracy of both uni-
modal and multimodal models compares favourably with previ-
ous work, demonstrating the benefits of including a Transformer
network. Furthermore, we demonstrate the improvements that
can be obtained for VCV identification using a multimodal ap-
proach combining rtMRI data and acoustic speech data.

2. Method
2.1. Data Preprocessing

This work 1 uses the USC Speech and Vocal Tract Morphology
MRI Database [8] which consists of rtMRI videos of 17 speak-
ers (9 female, 8 male) with synchronized audio recordings for
54 different VCV sequences. The videos capture the midsagit-
tal posture of the entire upper vocal tract at a frame rate of 23.18
frames/sec and a spatial resolution of 68 × 68 pixels over a 200
mm × 200 mm field of view centred on the tongue body. The
VCV sequences for each subject are spread across three record-
ings, each containing 18 utterances. Speech audio is recorded
at 20 kHz sampling rate.

In the preprocessing phase, we evaluated 54 VCV utter-
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Figure 1: Example utterances from the USC speech and Vocal
Tract Morphology MRI Database [8]. Each 647 ms audio in-
terval is centred on the video frame in which the articulatory
target of the intervocalic consonant is achieved.

ances from 17 subjects to identify a suitable analysis window
duration. Analysis of utterance lengths indicated that a 15-
frame window spanning 647 ms was sufficient to capture the
articulation of all VCVs in the dataset. The 15-frame window
containing each utterance was manualy located by inspecting
the audio and video to identify the center frame corresponding
to the the primary articulatory target of the intervocalic conso-
nant. In cases where target articulatory postures spanned multi-
ple frames, gestural trajectories of other articulators were used
to select the frame corresponding to the consonantal target. The
647 ms audio window corresponding to the 15-frame video se-
quence was extracted for each VCV token. Fig. 1 illustrates
audio analysis windows for four utterances of /apa/ by different
speakers, with time-aligned video frames. Audio features were
extracted for each audio frame by shifting a Hanning window
across the speech signal, where the window length was 51.2 ms
and the hopsize was 12.8 ms. The audio features consist of the
first 513 Fourier transform magnitude values per frame obtained
from applying a discrete-time Fourier transform of size 1024.

2.2. Multimodal Approach for VCV Classification

The proposed VCV classifier is shown in Fig. 2 and consists of a
feature extraction model and a Transformer-based classification
model. The feature extraction model consists of two compo-
nents: an audio backbone and a video backbone. The unimodal
model and multimodal model had 30 M and 37 M parameters,
respectively.

Figure 2: The proposed network model for VCV classification
combines a Convolutional network for acoustic data, ResNet18
for rtMRI data, and a Transformer model to integrate informa-
tion across the data frames.

Audio Backbone: To extract the relevant audio information, a
convolutional neural network consisting of two sequential pro-
cessing blocks is used: a convolutional block and a linear block.
The convolutional block includes two 1D convolutional layers.
The output of the audio backbone is a 2-D tensor of size [15,
512] matching the output size of the video backbone.
Video Backbone: The video backbone consists of a ResNet18
model which is applied to each image in the video and is used
to extract a sequence of image features. In keeping with the
structure of ResNet18, the rtMRI image data are formatted as
3-channel RGB data all with the same grayscale values. The
output of ResNet18 (4-D tensor with size [15, 512, 7, 7]) is re-
shaped to [15, 25088] and is fed into a fully connected layer to
obtain an image feature of size [15, 512].
Transformer: The final part of the proposed model is a Trans-
former network, using the the self-attention mechanism [19]
which is known to improve the modeling of sequence data. The
concatenation of the image and speech encodings is referred to
as late data fusion and the Transformer network is well-suited to
integrating such data using the attention mechanism. The out-
put of the Transformer is the class probabilities for the 54 VCV
classes.

3. Experiments
This study investigates models for the classification of 54 En-
glish VCV utterances, using midsagittal rtMRI sequences and
companion speech audio data. These VCV sequences provide
a rich dataset for speech classification, as they feature intervo-
calic consonants – some sharing place and manner of articu-
lation – coarticulated with flanking context vowels potentially
differentiated by tongue and lip posture. The proposed method
is compared with several state-of-the-art techniques using the
USC Speech and Vocal Tract Morphology MRI Database [24].
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A training set was constructed from 14 speakers (7 female, 7
male; approximately 80% of total data), and the test set con-
tained the remaining 3 speakers (2 female, 1 male; approxi-
mately 20% of total data).

In order to avoid overfitting and poor generaliza-
tion given the limited data, we applied several data aug-
mentation techniques. For image data, RandomHori-
zontalFlip(p=0.5), RandomRotation(15), and RandomAdjust-
Sharpness(sharpness factor=0.5, p=0.5) from torchvision were
used during training. For audio data, TimeMasking(30),
TimeMasking(10), and FrequencyMasking(30) from torchaudio
(2.0.2) [25] were used. The ResNet18 model used was pre-
trained on ImageNet with a batch size of 16, 100 epochs, and
an AdamW [26] optimizer with a learning rate of 0.001 for
training. We used the Monte Carlo method for tuning hyper-
parameters while building our models and then used the same
configuration for all subsequent models. Early-stopping with a
latency of 20 epochs was applied. Testing was conducted with
a batch size of four.

The model was initialised using the default random initial-
ization mechanism included in PyTorch (2.0.1) [27]. To ensure
reproducibility, we fixed the random seed of used libraries to 42
and configured PyTorch and CUDA to use deterministic imple-
mentation. Training was conducted on a P40 GPU, achieving
an average duration of approximately 260 seconds per epoch.

3.1. Results

We evaluate the various neural network models for VCV clas-
sification, using categorical cross-entropy as the loss measure
and top-1 categorical accuracy to analyze the performance of
the models. It’s important to note that our data are balanced
across different categories, which means that overall metrics
and balanced metrics are equivalent in this context. This bal-
ance ensures that our performance evaluations are not biased by
disproportionate representation of any category, allowing for a
more accurate assessment of model effectiveness.

The evaluation method includes the calculation of confi-
dence intervals for model performance. We used a bootstrap
method [28, 29] to conduct 1,000 sampling runs, each with a
put-back from the dataset, to simulate different data distribu-
tions. With this method, we calculated confidence intervals for
model accuracy, specifically by calculating the 5% and 95%
quartiles of accuracy for these 1,000 sampling runs. This pro-
cess provides additional insights into the stability of the model’s
performance and can help assess fluctuations in the model’s per-
formance on different subsets of data.

Table 1: Comparison of the proposed model with several ref-
erence models on a VCV classification task with 54 different
VCVs

Model Acc. Confidence Interval
Unimodal Approach,
Video [11] 42.04% [40.81%, 44.3%]
Unimodal Approach,
Video [17] 39.02% [36.69%, 41.95%]
Unimodal Approach,
Video [ours] 80.24% [78.19%, 82.3%]
Multimodal Approach,
Video and Audio [17] 21.34% [19.01%, 23.68%]
Multimodal Approach,
Video, and Audio [ours] 87.86% [85.79%, 89.51%]

Figure 3: Percentage of errors in test data analysis by place and
manner of articulation (top). The number of different category
errors (bottom).

3.1.1. Comparison with state-of-the-art (SOTA) models

While work in [11] focuses on VCV classification like our
study, the work in [17] focuses on a different classification task
constructed out of categories that include 5 places of articula-
tion and 7 manners of articulation, as well as a 39 phoneme
classification. As a result, we compare our unimodal approach
with the results of [11] directly but are unable to perform a di-
rect comparison with the unimodal and multimodal approaches
of [17]. As previous work did not release the models publicly,
we replicated the models using the configuration provided in
the literature. Our replication study of the work in [17] presents
subpar results in comparison to our multimodal approach on the
task of VCV classification using the USC-TIMIT [9] dataset.
We present all of these results in Table 1.

The dataset [24] used in this study includes 54 classes of
VCV combinations, consisting of vowels /a/, /u/, and /i/ paired
with 18 consonants. However, relying solely on video data
makes it challenging to distinguish certain consonants, partic-
ularly those sharing places and manners of articulation. For
consonant pairs such as /p/-/b/, /t/-/d/, and /k/-/g/, for exam-
ple, the only distinguishing phonological feature is voicing. A
confusion matrix considering these challenges revealed a the-
oretical ceiling performance of 77.78%, which represents the
highest achievable accuracy by a classifier using visual infor-
mation alone, if voicing distinctions do not greatly influence
midsagittal posture.

The results in Table 1 indicate that the Transformer network
provides substantial improvement (> 38%) compared with pre-
vious models. Comparing the performance of the proposed net-
work model using unimodal and multimodal data indicates mul-
timodal performance improves by about 7%. Interestingly, our
unimodal model exceeds the theoretical performance ceiling for
video-only data, suggesting that systematic differences do exist
in these rtMRI images between voiced and unvoiced consonants
with equivalent manner and place [30, 31].
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Figure 4: The attention values for each frame in the entire VCV sequence obtained from the video-only model (top) and multimodal
model (bottom) for 54 VCVs with respect to f6 (a), f7 (b), and m2 (c).
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Figure 5: The attention values and the corresponding video
frames corresponding to subjects f6 on /ini/, f7 on /udu/, and
m2 on /ata/ using the model with unimodal data (top) and mul-
timodal data (bottom).

More insights into the performance differences between the
unimodal and multimodal models are provided through system-
atic analysis of classification errors (Fig. 3). Fig. 3A shows the
percentage of total errors based on the specific place and manner
of articulation. The general trend is for improved performance
using multimodal data. Fig. 3B illustrates how many category
errors are made, i.e. incorrectly classified voice, place, and/or
manner. The results indicate that the multimodal model reduces
the types of classification error made.

4. Analysis and Discussion
To better understand the performance of our network model,
we explore the attention matrices from the Transformer and the

frames of the rtMRI videos that receive the most attention from
the model. As there are two encoders with eight multi-head at-
tention units, we obtain 16 attention matrices. We perform a
z-score normalization on each attention matrix and then thresh-
old at one positive standard deviation, so that all values below
the threshold are set to zero. We then calculate the mean of
the normalized-and-thresholded attention matrices and apply a
second threshold operation, again using one positive standard
deviation as the threshold value (Fig. 5). We shall refer to the
attention matrix values as ‘the attention values’.

Consider Fig. 5, in which attention values for the 15 frames
of three example utterances are illustrated, along with video
frames corresponding to the largest attention values. The top
row of each panel shows attention values for the unimodal
model, and the bottom row, attention values for the multimodal
model. We can observe that the multimodal model better ‘at-
tends’ to the central video frame, which corresponds to the con-
sonant articulation. To further explore this observation, Fig. 4
shows the attention values for all of the 54 VCVs for the three
test subjects. In order to simplify the image, we summed the at-
tention values for the three repeats of each VCV. Fig. 4 clearly
indicates that the multimodal model demonstrates improved at-
tention to the frame with the consonant, and likely accounts for
some of the improved performance of the multimodal model
over the unimodal model.

5. Conclusion

In this work, we explore VCV classification based on rtMRI
data and acoustic speech data, and propose unimodal models
using rtMRI data only, and a multimodal model integrating
rtMRI data and audio data. The multimodal model combines
a ResNet18 network to process the image data and a CNN
network to process the audio data, and a Transformer to inte-
grate the image and audio data embeddings. Visualization of
the Transformer attention matrices provides insight into how
the model attends to different frames of an input sequence. It
demonstrates that the model has the ability to adjust its focus to
highlight important frames that may contain critical features for
the VCV classification task. In the future, we will explore more
detailed and dynamic analysis of the rtMRI data, which will
hopefully facilitate our understanding and analysis of speech
acoustics.
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Monteserin, C. Smith, B. Godinez, L. Goldstein, D. Byrd, K. S.
Nayak, and S. S. Narayanan, “A multispeaker dataset of raw and
reconstructed speech production real-time MRI video and 3D vol-
umetric images,” Scientific Data, vol. 8, no. 1, p. 187, Dec. 2021.

[25] J. Hwang, M. Hira, C. Chen, X. Zhang, Z. Ni, G. Sun, P. Ma,
R. Huang, V. Pratap, Y. Zhang, A. Kumar, C.-Y. Yu, C. Zhu,
C. Liu, J. Kahn, M. Ravanelli, P. Sun, S. Watanabe, Y. Shi, and
Y. Tao, “TorchAudio 2.1: Advancing Speech Recognition, Self-
Supervised Learning, and Audio Processing Components for Py-
torch,” in 2023 IEEE Automatic Speech Recognition and Under-
standing Workshop (ASRU). Taipei, Taiwan: IEEE, Dec. 2023,
pp. 1–9.

[26] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regu-
larization,” in International Conference on Learning Representa-
tions. New Orleans: OpenReview.net, May 2019.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch:
An Imperative Style, High-Performance Deep Learning Library,”
in Proceedings of the 33rd International Conference on Neural
Information Processing Systems, Dec. 2019, pp. 8026–8037.

[28] B. Efron and R. Tibshirani, An introduction to the bootstrap, ser.
Monographs on statistics and applied probability. New York:
Chapman & Hall, 1993, no. 57.

[29] P. Ferrer, L. and Riera, “Confidence Intervals for evaluation
in machine learning.” [Online]. Available: https://github.com/
luferrer/ConfidenceIntervals

[30] R. D. Kent and K. L. Moll, “Vocal-Tract Characteristics of the
Stop Cognates,” The Journal of the Acoustical Society of America,
vol. 46, no. 6B, pp. 1549–1555, Dec. 1969.

[31] M. I. Proctor, C. H. Shadle, and K. Iskarous, “Pharyngeal articu-
lation in the production of voiced and voiceless fricatives,” The
Journal of the Acoustical Society of America, vol. 127, no. 3,
2010.

1349


